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Abstract

Leptin decreases food intake through actions in the hypothalamus, partly through interactions with neuropeptide Y (NPY). However,

NPY also produces behavioral antistress effects mediated inter alia through the amygdala. If leptin generally suppresses NPY function, the

utility of leptin-mimics for treatment of obesity might be limited. Here, we therefore compared the effects of intracerebroventricular leptin on

hypothalamic and amygdala NPY expression, as well as the respective related behaviors, i.e., feeding and experimental anxiety. Rats were

injected intracerebroventricularly with leptin once daily for 6 days. Leptin-treated subjects consumed significantly less chow and had

reduced body weight at the end of the treatment period compared to saline-treated controls. This was accompanied by a significant

suppression of hypothalamic NPY expression. In contrast, the expression of NPY within the amygdala was unaffected by leptin. In parallel,

in an established animal model of anxiety, the elevated plus-maze, no effect of leptin on anxiety-related behaviors was observed. In

conclusion, leptin selectively affects the hypothalamic NPY system and its functional outflow, i.e., feeding and endocrine stress responses.

Despite modifying endocrine responses, leptin treatment does not affect behavioral measures of experimental anxiety. D 2002 Elsevier

Science Inc. All rights reserved.
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1. Introduction

Extensive evidence links hypothalamic neuropeptide Y

(NPY) to food intake regulation. For instance, increased

NPY expression has been demonstrated in this area follow-

ing fasting (Calza et al., 1989), and acute NPY injections

into the ventricles or locally into the paraventricular nucleus

of the hypothalamus induce food intake (Clark et al., 1984;

Levine and Morley, 1984; Stanley and Leibowitz, 1985)

When NPY is administered chronically, a state mimicking

the hormonal and metabolic changes seen in obesity is

induced (Vettor et al., 1994; Zarjevski et al., 1993). It is

presently not clear whether the profound effects of NPY on

feeding is mediated via Y5 receptors, Y1 receptors, or both

(Gerald et al., 1996; Kanatani et al., 1999). Within the

hypothalamus, NPY-expressing cell bodies are located in the

arcuate nucleus with projections to the paraventricular

nucleus (Gehlert et al., 1987; Morris, 1989).

In addition to its effects on feeding, NPY is involved in

behavioral responses to stress through extrahypothalamic

mechanisms. Thus, amygdala expression of NPY is strongly

influenced by stress (Thorsell et al., 1998, 1999), while

intra-amygdala administration of NPY leads to a marked

behavioral antistress effect. This antistress action of NPY

appears to be mediated through Y1 receptors (Heilig et al.,

1993; Wahlestedt et al., 1993; Sajdyk et al., 1999).

The obese (ob) gene was first identified in 1994 (Zhang

et al., 1994). Its protein product, leptin, is synthesized in

adipose tissue and circulating levels of the protein reflect

the size of the body’s fat mass (Maffei et al., 1995). Leptin

deficiency or leptin resistance cause overeating and obesity

(Chua et al., 1996). The obesity in ob-deficient mice can

be reversed by systemic leptin administration. Leptin

receptors have been found in both the arcuate and the

paraventricular nucleus (Håkansson et al., 1998; Schwartz

et al., 1996), and are colocalized with NPY in the arcuate

nucleus (Håkansson et al., 1996). Intracerebroventricular

administration of leptin inhibits NPY-induced feeding in
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the rat and suppresses NPY mRNA expression in the

arcuate nucleus (Schwartz et al., 1998). Leptin inhibits

both release and synthesis of NPY, thus giving rise to both

short- and long-term effects (Schwartz et al., 1996; Ste-

phens et al., 1995; Glaum et al., 1996). In addition to NPY,

the anorexigenic effect is in part mediated by corticotropin-

releasing hormone (CRH) (Uehara et al., 1998), a principal

regulator of the hypothalamic–pituitary–adrenal axis

(HPA axis).

In addition to its effects on feeding, leptin is involved in

endocrine stress responses. Its synthesis and secretion is

regulated by glucocorticoids (De Vos et al., 1901). Also,

leptin has been shown to blunt the corticosterone response

to stress when administered intraperitoneally to mice (Hei-

man et al., 1997) and to have a direct inhibitory effect on

glucocorticoid secretion by human and rat adrenal gland in

vitro (Pralong et al., 1998). However, contradicting evid-

ence exist as to the effect of leptin on corticosterone levels

and, thus, leptin has been demonstrated to elevate serum

corticosterone both in vitro and in vivo (Malendowicz et al.,

1997, 1998). Also, when administered centrally to rats,

leptin has been shown to increase plasma levels of ACTH

and corticosterone in a dose-dependent manner (Morimoto

et al., 2000; van Dijk et al., 1997).

Thus, NPY and leptin interact at a neuronal level

within the hypothalamus, having opposing roles in regu-

lation of feeding behavior. Little is known about possible

NPY–leptin interactions in the extrahypothalamic systems

and within the amygdala in particular. This issue is

important if leptin-mimics are to be developed for clinical

use, since suppression of NPY expression within the

amygdala might limit their utility, due to side effects such

as increased anxiety. Here, we therefore compared the

effects of repeated intracerebroventricular leptin injections

in the rat on hypothalamic and amygdala NPY expression,

and on NPY-related functional outflows of these two

structures, feeding and experimental anxiety, respectively.

2. Material and methods

2.1. Subjects

Male Sprague–Dawley rats (body weight 220–250 g at

time of surgery) were anaesthetized with ketamine/xylazine,

placed in a Kopf stereotactic apparatus, and equipped with

unilateral intracerebroventricular guides (toothbar: 3.3 mm

below the interaural line, coordinates: 0.8 mm posterior and

1.4 mm lateral to bregma). The guide projected 3.3 mm

below the skull surface and the injector used projected

1.0 mm further. Animals were single-caged and kept

according to Animal Committee guidelines and under per-

mission S81-85 (Stockholm South Ethical Committee).

Food and water were available ad libitum and animals were

kept in a controlled environment with a 12:12-h light/dark

cycle (lights on at 7 a.m.).

2.2. Leptin treatment

Leptin (a kind gift from Amgen, Thousand Oaks, CA,

USA) was diluted in sterile Ringer solution to a concentration

of 1 mg/ml. Ten microliters of the leptin solution or vehicle

were injected over 2 min and the injector left in place for an

additional minute to prevent backflow into the guide cannula.

2.3. Food intake and body weight development

A preweighed amount of food pellets was provided daily

to each cage. In conjunction with intracerebroventricular

injections, remaining amount of chow was measured, and

the amount of chow consumed in grams per day was

calculated. Body weight was determined daily.

2.4. Locomotor activity

Exploratory locomotor activity was determined by pla-

cing subjects in locomotor activity cages equipped with

infrared beam detection (Med Associates, St. Albans, VT,

USA). Interbeam distance was 8.5 cm horizontally and

6.5 cm vertically, and activity was recorded for 30 min in

intervals of 10 min.

2.5. The elevated plus-maze

The plus-maze was carried out as previously described

(Möller et al., 1997). Briefly, the apparatus consisted of two

open and two closed arms (50� 10 cm, wall height 50 cm)

and was made of black plastic with a rubber floor. The maze

was elevated 50 cm above the floor and testing was done

under dimmed red light. Rats were placed on the central area

of the maze facing one open arm and were allowed to

explore for 5 min. Automatic scoring was used (EthoVision,

Noldus, Wageningen, the Netherlands).

2.6. Corticosterone determination

Serum corticosterone levels were determined using the

Coat-A-Count assay (DPC Scandinavia, Mölndal, Sweden)

according to the manufacturers instructions. A 45-min

restraint stress was used to elevate corticosterone levels

in the subjects and leptin was injected 20 min prior to

the restraint.

2.7. Solution hybridization RNase protection

assay (SH-RPA)

The SH-RPA was performed as previously described

(Thorsell et al., 1998). In brief, probes were prepared using

the MAXIscript kit (Ambion, Austin, TX, USA) according

to the manufacturer’s instructions. The template used for in

vitro transcription of NPY antisense was a pGEM-2 vector

with a 290-bp insert of the rat preproNPY genomic DNA

sequence (a kind gift from Prof. D. Larhammar, Uppsala,
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Sweden). The template for the b-actin antisense riboprobe

and the b-actin sense external standard was a pBluescript

SK II vector with a 150-bp insert of the rat b-actin cDNA

(a kind gift from Dr. M. Bader, Max-Delbróck Centrum,

Berlin, Germany). In vitro transcription was performed in

the presence of [a-32P]-radiolabeled UTP.

The RPA II kit (Ambion) was used for the RPA accord-

ing to the manufacturer’s instructions. For construction of a

standard curve, radiolabeled antisense b-actin probe was

hybridized with increasing amounts of unlabeled sense

b-actin. For sample analysis, total RNA (2–4 mg) was

hybridized with radiolabeled NPY and b-actin antisense

RNA probes (90,000 and 45,000 cpm, respectively). Fol-

lowing RNase treatment, samples were separated on a 5%

nondenaturing polyacrylamide gel and detected on a Fuji

BAS 5000 Phosphor-Imager.

2.8. In situ hybridization

In situ hybridization was performed as previously

described (Caberlotto et al., 1998). In brief, brain sections

were fixed in 4% paraformaldehyde/1� PBS, dehydrated in

graded series of ethanol and delipidated in chloroform. The

slides were then air dried and stored at � 70 �C until use.

Labeled riboprobe was added to the hybridization cocktail

in a concentration of 20� 103 cpm/ml, and 0.1 ml of the

solution was applied to each slide. The slides were cover-

slipped and hybridization was carried out at 55 �C overnight

in a humidified chamber. The sections were washed in

graded solutions of SSC, dehydrated in ethanol, allowed

to dry, and exposed to Hyperfilm. The NPY riboprobe was

made from a 508-bp cDNA subcloned into a pGEM4 vector

(Hanze et al., 1991).

3. Results

3.1. NPY mRNA levels

NPY mRNA levels were measured using two methods,

SH-RPA and in situ hybridization. Using SH-RPA on

hypothalamic tissue homogenates, a suppression of NPY

mRNA expression was suggested [one-way ANOVA for

treatment, F(1,17) = 2.9, P= .056; Fig. 1A]. This was con-

firmed using in situ hybridization to evaluate NPY mRNA

levels within the arcuate nucleus of the hypothalamus,

whereupon NPY expression was confirmed to be sup-

pressed [one-way ANOVA for treatment, F(1,9) = 11.9,

P= .007; Fig. 1B].

In contrast, NPY mRNA levels within the amygdala,

neocortex, and striatum were not significantly affected by

the leptin treatment as measured by SH-RPA (Table 1).

3.2. Body weight development and food intake

Leptin treatment significantly decreased body weight

gain and daily food intake in treated animals as compared

to saline-treated controls [two-way repeated-measures

ANOVA, bodyweight: F(12,228) = 11.47, P < .00001; food

intake: F(8,152) = 3.13, P= .003; Fig. 2].

3.3. Locomotion

No difference could be detected in locomotor behavior

between the leptin-treated subjects and the controls (data

not shown).

3.4. Plus-maze

Results are given in Table 2. Leptin treatment did not

significantly affect anxiety-related behavior measured as

either percentage of time spent on the open arms of the

Fig. 1. (A) Analysis of NPY mRNA in whole-hypothalamus homogenates

following 6 days of leptin treatment (10 mg icv) suggested suppression of

NPY expression by leptin ( P= .056). (B) This was confirmed when in situ

hybridization was used to estimate NPY mRNA expression in the arcuate

nucleus of the hypothalamus ( P= .007).

Table 1

NPY mRNA levels within the striatum, amygdala, and neocortex

determined using SH-RPA (data are given as mmol/mg total RNA)

Region Control Leptin P value

Amygdala 25.9 ± 3.5 33.4 ± 4.3 .22

Neocortex 70.0 ± 5.2 74.4 ± 6.0 .54

Striatum 36.9 ± 5.6 26.7 ± 2.2 .09
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maze or percentage of entries made onto the open arms.

Total number of entries made onto any arm was also

unaffected by the treatment, in agreement with the result

from the locomotor activity testing.

3.5. Corticosterone

Leptin treatment gave rise to significantly elevated base-

line corticosterone levels and restraint stress significantly

elevated serum corticosterone levels in both controls and

leptin-treated subjects [two-way ANOVA, treatment:

F(1,17) = 7.5, P= .01; stress: F(1,17) = 122, P < .000001].

However, no significant interaction effect was seen indic-

ating no effect of leptin treatment on corticosterone response

to restraint stress [F(1,17) = 0.32, P= .58]. Data are shown

in Table 3.

4. Discussion

Our present findings confirm and extend previous reports

indicating an inhibitory action of centrally administered

leptin on hypothalamic NPY expression as a possible

mechanism that might contribute to appetite-suppressant

effects of leptin. This leptin–NPY interaction seems to be

restricted to the arcuate nucleus, since neither NPY expres-

sion in the amygdala, nor an NPY-dependent functional

output of the amygdala, plus-maze behavior (Möller et al.,

1997), were affected by repeated leptin administration.

The interaction between leptin and NPY at the level of

the hypothalamic arcuate nucleus has been suggested on the

basis of leptin receptors being present in NPY-ergic neurons

(Håkansson et al., 1996) and of suppressed preproNPY

expression following intracerebroventricular administration

of two 3.5-mg leptin doses during a 40-h fasting period

(Schwartz et al., 1996). However, previous studies have

shown that NPY expression is markedly up-regulated within

the arcuate nucleus as a result of fasting (Sahu et al., 1992;

Schwartz et al., 1998), and thus the available evidence

demonstrates that the fasting-induced NPY expression is

inhibited by leptin. Our present findings show that leptin,

when given repeatedly into the brain, can also down-

regulate basal, unstimulated NPY expression in the arcuate

nucleus. Furthermore, our findings indicate that tolerance

does not develop to this action of leptin, since the effect is

present after 6 days of repeated daily injections.

Brain leptin receptors were initially predominantly

described in the hypothalamus (Mercer et al., 1996).

However, recent evidence clearly demonstrates that leptin

receptors, including the long form involved in transducing

the leptin signal, are also present in extrahypothalamic

areas, and among these within the amygdala (Burguera

et al., 2000). Regulation of amygdala NPY expression is

important in adaptive responses to stress (Thorsell et al.,

1999), and activation of amydala NPY receptors predom-

inantly of the Y1 subtype attenuates behavioral stress

responses in several animal models of anxiety (Heilig

et al., 1993; Sajdyk et al., 1999).

The present study therefore examined the possibility

that amygdala NPY expression, and the related function,

plus-maze behavior, might also be affected by leptin. Our

Table 2

Behavior on the elevated plus-maze

Control Leptin P value

Time index (%) 49.3 ± 3.5 50.9 ± 2.6 .71

Entry index (%) 54.4 ± 3.2 53.8 ± 2.3 .89

Total number of entries (n) 33.1 ± 1.2 34.2 ± 1.1 .51

Time index = (time on open arms/(time on open arms + time on closed

arms))� 100%. Entry index = (entries onto open arms/(entries onto open

arms + entries into closed arms))� 100%. Total number of entries = entries

onto open arms + entries into closed arms.

Table 3

Corticosterone values at baseline or following a 45-min restraint stress

period in subjects treated with saline (control) or leptin (data are given

as ng/ml)

Control Leptin P value

Baseline 69 ± 12 229 ± 33 .02

Stressed 490 ± 18 569 ± 46 .32

P value .0002 .0002

Fig. 2. Body weight development (A) and food intake (B) during leptin

treatment. Leptin was given intracerebroventricularly for the last 6 days.

For statistics, see Results. Arrow indicates start of leptin/saline injections.
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results do not support this notion. A differential action of

leptin on hypothalamic and amygdala NPY might be

related to differential coexpression of NPY and leptin

receptors in these two structures, with hypothalamic

(Håkansson et al., 1996), but not amygdala NPY neurons

coexpressing these receptors. To our knowledge, coexpres-

sion of leptin and NPY has not been demonstrated within

the amygdala.

Finally, in the present study, subchronic central admin-

istration of leptin increased basal levels of corticosterone.

This is in agreement with previously reported effects of

centrally administered leptin (Morimoto et al., 2000; van

Dijk et al., 1997). In contrast, the stress-induced cortico-

sterone response was not affected in the present experi-

ments. Although a blunted corticosterone response to stress

following leptin treatment has been reported in mice (Hei-

man et al., 1997), this was after peripheral rather than

central administration. Thus, leptin appears to affect the

HPA axis in a complex manner, and at different levels.

In summary, we present data indicating that subchronic

presence of elevated central leptin levels affects hypothala-

mic, but not extrahypothalamic NPY expression and func-

tion. Feeding regulation by leptin might therefore be

possible to target with small molecular leptin-mimicking

ligands without side effects of decreased amygdala NPY

signalling, i.e., elevated anxiety.
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